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Abstract

First principles microphysics models are essential to the design and analysis of high energy density physics experiments.
Using experimental data to investigate the underlying physics is also essential, particularly when simulations and
experiments are not consistent with each other. This is a difficult task, due to the large number of physical models
that play a role, and due to the complex and noisy nature of the experiments. This results in a large number of
parameters that make any inference a daunting task; it is also very important to consistently treat both experimental
and prior understanding of the problem. In this paper we present a Bayesian method that includes both these effects,
and allows the inference of a set of modifiers that have been constructed to give information about microphysics
models from experimental data. We pay particular attention to radiation transport models. The inference takes
into account a large set of experimental parameters and an estimate of the prior knowledge through a modified χ2

function, which is minimised using an efficient genetic algorithm. Both factors play an essential role in our analysis.
We find that although there is evidence of inaccuracies in off-line calculations of X-ray drive intensity and Ge L shell
absorption, modifications to radiation transport are unable to reconcile differences between 1D HYDRA simulations
and the experiment.

Keywords: inertial confinement fusion, radiation hydrodynamic simulation, Bayesian inference, plasma opacity,
uncertainty analysis, convergent ablator, national ignition facility, radiation transport

1. Introduction

In recent inertial confinement fusion (ICF) experiments
performed at the National Ignition Facility (NIF) [1], sig-
nificant differences between radiation-hydrodynamic sim-
ulations and experimental data have been observed [2].
It is not clear whether these simulations are inaccurate,
or that they neglect some important physical effect. It is
challenging to investigate which aspects of physics models
are causing discrepancies and should be improved, largely
due to the complex, nonlinear dependence of ICF capsule
evolution on a large number of underlying models.

The complex nature of the experimental designs is an
important source of the difficulties. There are a large
number of experimental parameters that are only known
with limited accuracy; variations in these parameters rep-
resent a noise source in the experimental data that can
reduce the significance of the experimental result. Since
the physical models we aim to investigate are fairly well
constrained by a large amount of previous work, it is im-
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portant to take into account the relative significance of
the experiment and of any previous work. The interplay
between experimental and previous information is an es-
sential ingredient in a reliable analysis, and is often ne-
glected. Its inclusion requires a consistent treatment of
all physical and experimental parameters; together there
are far too many of these to treat directly, however they
are too important to neglect completely.

In this paper we present an analysis of experimental
data taken from a single NIF shot, N110625. The aim
is develop a method of investigating microphysics models
taking into account many of the noise sources in the ex-
periment, and prior work. We use an inference model that
has been developed specifically to allow the large number
of parameters to be dealt with in a consistent manner [3].
In this work we focus on inferring information about ra-
diation transport in the ablator of an ICF capsule from
time-resolved data taken from radiography [4]. Radiation
transport relies on several physics models which must be
approximated to make a full capsule simulation tractable,
and as a result are often considered to be potential sources
of model inaccuracy. In this work existing microphysics
tables are modified in physically motivated ways; these
modifiers are interpreted as measures of the inaccuracies
in the physics models, and their inferred values give in-
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formation about the source of difficulties in describing
experimental observations.

2. Microphysics in Inertial Confinement Fusion
ablators

In a typical indirect drive ICF design a spherical plastic
shell, filled with deuterium-tritium (DT) fuel, is bathed
in xrays created by the interaction of laser light with a
high Z hohlraum. The resulting ablation of the outer
plastic produces a rocket action that implodes the shell,
compressing the fuel until it undergoes thermonuclear fu-
sion. The propagation and absorption of X-ray energy in
the plastic and fuel is an essential piece in the description
of the implosion requiring detailed models of microscopic
physics. These physics issues are described by a suit of
computer simulations that provide, for example, tables
of radiative opacities needed as input to the subsequent
radiation-hydrodynamic simulations [5].

Achieving ignition is a challenge and so the design of
successful targets requires careful tuning of a large set of
design parameters, based on the results of simulations [6].
This means that the details of microphysics models can
be very important in determining implosion performance;
nevertheless, the important aspects and trends of target
evolution can be understood with relatively simple one-
dimensional models [7]. We will discuss the important
aspects of microphysics models in these terms.

At its peak, the X-ray drive on the outer surface of the
capsule has a brightness temperature of around 300eV.
The majority of the energy of this radiation field is in
photon energies that coincide with the K shell absorp-
tion edge in carbon (which accounts for ∼50% by number
of the plastic ablator) and so the model of this absorption
feature plays an important role in determining energy de-
position in the ablator. Higher photon energies are able
to propagate all the way through the carbon, depositing
their energy in the DT fuel. Heating of the fuel by these
hard X rays has a detrimental effect on the implosion
since, for an efficient low-temperature adiabatic implo-
sion the final density is in part determined by the initial
temperature of the DT. Preheat by X rays reduces fuel
compressibility and ultimately reduces the final conver-
gence that can be achieved. An important player in this
preheat is emission from the M shell of the gold hohlraum
wall, which produces an enhancement over the thermal
spectrum of photon energies > 1.8KeV; in order to block
these from reaching the fuel a dopant layer is buried in
the ablator. In this work we consider germanium doped
ablators, in which case absorption by the Ge L shell aligns
with the Au M shell emission and prevents preheat of the
fuel.

These two aspects of radiation transport, namely ab-
sorption of the drive field and preheat of the fuel, clearly
depend on physical models employed in the generation
of the drive spectrum and of the absorption in carbon

and germanium for a large range of temperature and den-
sity conditions, i.e., 10-200 eV and 1-10 g/cc respectively.
They also have direct consequences for the dynamics of
the implosion. A simple rocket model for the inwards ac-
celeration of the ablator [7] shows that the velocity and
remaining ablator mass are directly related to velocity of
the ablated material, and therefore the absorption of drive
radiation. The density of the fuel at a given time is related
to the preheat. Measurements of these three quantities,
as described in Sec. 4, can therefore provide information
about underlying radiation transport models. The com-
plexity of ICF experiments and radiation-hydrodynamic
simulations means that extracting this information is a
challenging data analysis problem; we describe a method
of performing this analysis in the next section.

3. Bayesian analysis of ICF experiments

The relationship between physical models, which them-
selves are very complex, and the data is approximated by
radiation-hydrodynamic simulations which may not be
well behaved enough to allow the use of computational
inversion techniques [8] or fitting techniques [9, 10]. In
fact, the large number of physical models that control the
evolution of an ICF target also presents a problem for
these methods. The complex nature of the experiments
also means that there are a large number of experimental
parameters; although these are often constrained by tar-
get metrology and design tolerances, their large number
makes them a significant source of noise in simulations
[11]. Dealing with the very large space of physical and
experimental parameters is an important challenge to a
consistent analysis of ICF data. The usual methods of re-
ducing the number of parameters, for example by Monte-
Carlo sampling, see Ref. [12], are prohibitively expensive,
and simply neglecting parameters will lead to misleading
results.

In Ref. [3] we have developed an inference method that
allows these problems to be addressed. The approach is
to separate out those parameters that are known to affect
radiation-hydrodynamic simulations but are not of direct
interest to the investigation of microphysics models; these
are defined as ‘nuisance parameters’. Typically these pa-
rameters refer to experimental variables which have a
known probability distribution, for example a target di-
mension that has been measured with some error bar.
The probability distributions of all nuisance parameters
are mapped onto the output of radiation-hydrodynamic
simulations; as a result the simulation output can be con-
sidered as being probabilistic. In our model we assume
a linear response to nuisance parameters, resulting in an
analytic expression for the probability distribution of sim-
ulation outputs, i.e., the likelihood. Parameters that are
physically interesting (and therefore will be inferred from
experimental data), such as microphysics models, are kept
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separate from the nuisance parameters allowing their re-
lationship with experimental data to be described using
the full complexity of the simulation code.

The inference model we have outlined is based on the
maximum a posteriori (MAP) estimate; that is, the most
probable values of all parameters of interest when the
experimental data and prior information have been taken
into account. In our analysis these values are found by
minimising the function [3]

I(θ|dexp) =
∑

i

(dexp,i − dm(θ)i)2

σ2
exp,i

− (dexp − dm(θ))T βT β(dexp − dm(θ))

+
1
2
ln

(
|Λη||αT α|

)
− lnP (θ) (1)

with respect to the vector of interesting parameters θ.
In the above expression, dm(θ) is the vector of simula-
tion outputs for given interesting parameters and nomi-
nal values of the nuisance parameters, dexp is the vector
of experimental data, P (θ) is the prior distribution of in-
teresting parameters, to be discussed further below, and
the matrices α and β satisfy the equations

αT α = AT Λ−1
expA + Λ−1

η

βT α = Λ−1
expA .

These matrices summarise the effect of nuisance param-
eters on our analysis; Λexp and Λη are the covariance
matrices of the experimental measurement and nuisance
parameters, respectively, and A is the linear response of
the simulation to nuisance parameters η: Aij = ∂dm(θ)i

∂ηj
.

Equation (1) takes the form of a modified χ2 function.
The first term on the right hand side is the usual χ2 anal-
ysis, and the second can be interpreted as a loss of infor-
mation from the experiment due to nuisance parameters.
The third is a normalisation factor. The final term ex-
presses the contribution from prior work on the values of
the interesting parameters. In our application we inter-
pret this term as an estimated error bar on the physical
models we aim to investigate, reflecting previous work to
validate them. The inclusion of this prior information
provides context for the experimental result, allowing in-
ferences to be obtained from a single observation. In Ref.
[3] this was shown to play a very important role in the
analysis of NIF data.

The summary of nuisance parameters in the matrix
βT β has reduced the number of variables we must con-
sider to only the ones of direct interest. The resulting
smoothing of the simulation output also means that the
minimisation of equation (1) can be approached using
standard numerical methods. In this work we use a ge-
netic algorithm (GA) to efficiently perform the minimi-
sation. The details of the genetic algorithm have been
optimised to allow an efficient exploration of a large pa-
rameter space; the sacrifice is that the algorithm is more

likely to find local minima. In the case of the ICF data
we will consider here, this is not expected to be an issue
since the interplay between likelihood and prior informa-
tion tends to produce a single minimum. In more complex
cases this can be tested by using several random initiali-
sations, or avoided by using a more robust algorithm.

4. Application to NIF experimental data

We aim to demonstrate the application of our Bayesian
inference method to the investigation of microphysics
models using NIF data. We use 1D simulations of a cap-
sule implosion performed using the HYDRA radiation-
hydrodynamics code [13]. Our investigation proceeds by
defining a set of modifiers to the inputs of these simula-
tions, and inferring the values of these modifiers. We are
concentrating on physics processes in radiation transport
and so our modifiers are to the X ray drive spectrum im-
pinging on the capsule’s outer surface, which are found
from separate models of the hohlraum, and to relevant
opacity models of the ablator material taken from the
TABOP opacity model. The use of modifiers, placed on
the results of existing calculations, allows our inference
results to be interpreted as implied inaccuracies in micro-
physics models. We give details of our modifiers in table
1. In the case of the drive timing modifier, the prior error
bar reflects the error bar on the DANTE instrument [14],
which gives a time-resolved measurement of the drive ra-
diation temperature. This instrument has played an im-
portant role in the development of separate hohlraum sim-
ulations that produce drive profiles for our capsule simu-
lations. For all other modifiers, prior errors are estimated
to reflect the expected accuracy of the underlying physi-
cal models. All modifiers, with the exception of the drive
timing, are dimensionless multipliers on existing models
and so their ‘nominal’ and, therefore, prior values are 1;
the drive timing has a nominal shift of 0 ns.

Experimental data are taken from a single NIF ‘con-
vergent ablator’ shot, N110625. This experiment utilised
a germanium doped capsule which was radiographed as
it imploded giving a time- and space-resolved measure-
ment of plasma density [4, 15]. This then gives time-
resolved data for the implosion velocity, mass of the abla-
tor, and the density-radius product, ρR, of the imploding
fuel shell. In our analysis we consider these three data
points, taken at three times during rocket-like phase of the
implosion, in our analysis. The use of implosion velocity
and ablator mass, which diagnose the drive, along with
the ρR which is sensitive to preheat of the fuel, should
allow the degeneracy of our modifier set to be lifted, for
example the drive intensity and C K shell. This is impor-
tant since such degeneracy results in a set of multiplier
values that minimise Eq. (1); the inclusion of the ρR data
should select a single one of these values since it more fully
reflects the physics of the problem.
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Modifier Name Description Expected Effect Prior Error

Drive Intensity Multiplies intensity of 4th rise in X
ray drive

Increased drive results in increased ve-
locity and decreased ablator remaining
at given time

±0.1

Drive Timing Shifts the timing of the 4th rise of
the X ray drive Earlier rise increases drive at given time ±0.1

Au M Shell
Multiplies the intensity of the gold
M shell component of X ray drive
spectrum

Increased M shell results in increased
preheat and reduced ρR at given time ±0.2

C K Edge Multiplies the opacity of the K shell
absorption edge in carbon

Increased absorption increases effective
drive ±0.1

Ge L Edge Multiplies the opacity of the L shell
absorption edge in germanium Increased absorption reduces preheat ±0.1

Table 1: Description of the modifiers placed on input physics models. The values of these modifiers are inferred from
experimental data using the method described in the text, and are intended to give information about the accuracy
of radiation transport models for NIF ablators.

Modifier No Prior Including Prior
Drive intensity 0.57 0.90
Drive timing -0.45 ns 0.01 ns
Au M shell 1.84 0.97
C K edge 0.92 1.0
Ge L shell 1.15 1.16

Table 2: Positions of the best fit to experimental data for
NIF shot N110625. In both cases 29 nuisance parameters
are included; comparison of the two sets of data measures
the significance of the experimental data when compared
to prior knowledge.

For the multipliers and experimental data described,
our genetic algorithm is randomly initialised and proceeds
by automatically calling HYDRA. The nuisance parame-
ter modification βT β is calculated for the 29 physical di-
mensions, densities and material composition parameters
of the capsule [6], which are assumed to be known with
an error of 1%. We ran the GA for 25 generations with
92 members per generation, requiring up to 2300 HYDRA
simulations (the actual number is lower due to the optimi-
sations made to the GA), but the run time is equivalent
to < 200 CPU hours. In Table 2 we give the position
of the results for two cases; including and neglecting the
prior information, respectively. Since the position of the
minimum of Eq. (1) is determined by the relative impor-
tance of the prior information and experimental results,
comparison of these two cases provides information about
the significance of the experiment in measuring radiation
transport physics.

In Table 2 the fit given in the ‘No Prior’ column corre-
sponds to a maximum likelihood (ML) analysis, in which
the experimental data are the only source of information
about the values of the modifiers. In this case, the re-
sults demonstrate that to fit the data all modifiers should

be significantly different from their nominal values; this
implies that microphysics models are in considerable er-
ror. The previous information regarding these models is
taken into account in the ‘Including Prior’ column, and
the large difference in results demonstrates the impor-
tance of including prior knowledge. In that case, which
corresponds to the MAP result, all modifiers are much
closer to their nominal values. The noise in the experi-
ment makes the observed data insensitive to the details
of radiation transport; only the overall drive and Ge ab-
sorption are significantly modified from their prior values.
Our results suggest that the calculated drive intensity is
too high, consistent with previous work on ICF data, and
that the calculated absorption by the germanium dopant
layer is too low.

Comparison of the best fits to experiment, found using
the two inference methods (neglecting and including the
prior), allows us to measure the ability of inaccuracies in
radiation transport to explain problems with modelling
of the experiment. The quality of the inferred fits to ex-
perimentally inferred implosion velocity, ablator fraction,
and line density are shown in Fig. 1(a),(b) and (c) respec-
tively. In these figures, experimental data as a function of
time are shown in solid black, and simulation results us-
ing modifier values from Table 2 are plotted with long red
dashes (no prior) and short blue dashes (prior included).
The ML analysis, neglecting the prior information, gives a
reasonable qualitative fit to the data, but does not match
within all error bars. The MAP result is much closer to
an unmodified simulation and gives a poorer agreement
with experiment. The inability of either approach to give
a good match to the data suggests that discrepancies be-
tween simulations and experiments are not solely due to
issues with radiation transport.
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(a) Implosion velocity

(b) Fraction of ablator remaining

(c) Fuel ρR

Figure 1: Best fits to experimental data, corresponding
to HYDRA simulations using modifiers given in table 2.
Experimental data are shown in solid black, and infer-
ence results neglecting and including prior knowledge are
shown with long red dashes and short blue dashes, respec-
tively.(Color online)

5. Discussion and Conclusions

The work presented in this paper demonstrates a
method for inferring information about first principles
physics models from ICF data. The inference model we
use allows the inclusion of a large number of nuisance
parameters; these play an important role in determin-
ing the information in the experimental result. This is
essential when comparing experimental results with the
results of previous work, which is often the case in high
energy density physics. Although we focus here on ra-
diation transport in ICF ablators, the issues we discuss
are important in many of the experiments performed in
high energy density physics, and the inference method we
describe is easily applicable to any of these.

The main result of this work is that prior knowledge
about microphysics plays a very important role. Includ-
ing this in a consistent manner allows meaningful informa-
tion to be extracted from data, so that when data imply
a modification to physics models the result truly reflects
the state of the art. We have also shown that the complex
nature of ICF experiments means that the neglect of nui-
sance parameters and/or prior information in a simple χ2

or maximum likelihood analysis will give misleading re-
sults. In this work 29 parameters have been varied by 1%
to produce the information loss due to nuisance param-
eters; for the well characterised targets used at the NIF
certain capsule dimensions are known to a much better
level than this, however prior knowledge will play an es-
sential role regardless.

Once these factors are accounted for, there is evidence
that both the overall X-ray drive and the absorption of the
germanium L shell are inaccurate. This could serve to fo-
cus subsequent investigation of the underlying models, for
example, further inferences of inaccuracies in charge state
balance. However, the poor agreement between the cur-
rent best fit and the experimental data shows that issues
with radiation transport cannot explain discrepancies be-
tween the details of ICF implosions and simulations. It is
important to note that inferences based on an incomplete
set of modifiers, which appears to be the case here, may
never give a good fit to data. Until a good fit is found the
physical meaning of multipliers is limited, and inferred
values should be treated accordingly.

The method used here has been specifically designed
so that an analysis with a large enough set of modifiers is
feasible. Cases with 1-2 orders of magnitude more eval-
uations of χ2 are possible with a fairly modest computa-
tional requirement, and the number of nuisance parame-
ters can be increased in our linear model with almost no
numerical overhead.

Genetic algorithms have been previously used for high
energy density applications, with good results [16–18]. In
particular, there is interest in using multi-objective ge-
netic algorithms to consider several data sets simultane-
ously (typically 3 or 4). For the 9 data points we con-
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sider here, and the even larger sets we aim to use, such
multiobjective approaches would be difficult. Our single
objective modified χ2 approach is in effect a linear scalar-
isation of the multiobjective problem and allows much
larger datasets to be considered. The trade off is that
a single solution is found where multiobjective methods
give several candidates; our careful treatment of the er-
ror bars on each data point serves to justify our choice of
scalarisation.

It has been previously noted that the linear model we
employ is not justified for ICF targets, since they have
been highly tuned to operate at peak performance. The
advantages of the analytic expression Eq. (1) are great,
and our aim is to develop an analytic model that is more
suited to ICF data. The linear model does, however, cap-
ture the essence of the problem; that complex experiments
produce less significant results when compared to existing
knowledge. It is also true that in reality the growth of 2
and 3 dimensional instabilities plays a very important role
in determining the implosion efficiency. In severe cases
these can be much more important than the 1D consid-
erations that we have described; these multi-dimensional
effects can be experimentally diagnosed, allowing only the
best 1D implosions to be considered in analyses.

The Bayesian nature of our method allows the consis-
tent analysis of all available data, either by evolving the
prior knowledge as more data becomes available or by in-
cluding all data in a single analysis; the different sets of
data do not need to be from the same experiment, or even
ones of the same design. These extensions will form an
important part of our further work. Finally, the compu-
tational methods we have presented are suitable for both
experimental design and discovery purposes, and we aim
to develop this application.
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